Electrochemical recovery of sodium and sulfur species from spent caustic streams

Thomas Provijn
Promotor: Prof. Dr. Ir. Rabaey
Promotor + Tutor: Dr. Eleni Vaiopoulou
Tutor: Dr. Antonin Prévost
Problem

H$_2$S rich gas

<table>
<thead>
<tr>
<th>Scrubber</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean gas</td>
</tr>
<tr>
<td>NaOH</td>
</tr>
</tbody>
</table>

Spent Caustic
2-10 wt % NaOH
0.5 - 4 wt % H$_2$S

- Wet air oxidation
- Advanced oxidation
- Biological
- Electrochemical

- Costly
- No recovery
- Chemical usage
- Low efficiency

- Recovery of sodium and sulfur
- No chemical usage
Anode: IrOx coated Ti

Cathode: Stainless Steel

S\textsubscript{x}O\textsubscript{y}: S\circ, polyS, SO\textsubscript{4}2-, S\textsubscript{2}O\textsubscript{3}2-, SO\textsubscript{3}-

Cation Exchange Membrane

NaOH

DI H\textsubscript{2}O

Artificial Spent caustic: 4 wt% NaOH
1 wt% Na\textsubscript{2}S-S

Continuous reactor
Long term operation

- Operation of 2.5 months at 100 A/m² and loading rate of 50 g S L⁻¹ d⁻¹

- Steady cell potential (between 2.6 and 3 V)
 - No increased costs + steady state

- Sulfide removal efficiency: 69 ± 3%
 - 10 % Polysulfide
 - 20 % Sulfate
 - 40 % Thiosulfate

- Coulombic sodium hydroxide efficiency : 100 ± 5%
- Unaffected membrane/electrodes
Thank you for listening

• Special thanks to
 • Prof Dr. Ir. Rabaey
 • Dr. Eleni Vaiopoulou
 • Dr. Antonin Prévotieau